mirror of
https://gitlab.ewi.tudelft.nl/ee2l1/2025-2026/A.K.03.git
synced 2025-12-12 13:30:57 +01:00
new version
This commit is contained in:
parent
15d69eef79
commit
fde33154fe
@ -1,6 +1,7 @@
|
||||
import numpy as np # For convolution function
|
||||
import matplotlib.pyplot as plt # For plotting purposes
|
||||
import scipy
|
||||
from fontTools.misc.plistlib import end_true
|
||||
# import samplerate
|
||||
|
||||
from scipy import signal
|
||||
@ -17,63 +18,85 @@ from scipy.fft import fft, ifft # For fft and ifft
|
||||
|
||||
# ch3 function
|
||||
def ch3(x,y,Lhat,epsi):
|
||||
|
||||
# your code here (read the above text carefully for all the steps):
|
||||
N = max(len(x), len(y)) + 50
|
||||
x = np.concatenate((x, np.zeros(N - len(x)))) # Zero padding
|
||||
y = np.concatenate((y, np.zeros(N - len(y))))
|
||||
N = 2**int(np.ceil(np.log2(len(x)+len(y))))
|
||||
x = np.pad(x, (0,N - len(x))) # Zero padding
|
||||
y = np.pad(y, (0,N - len(y))) # Zero padding
|
||||
|
||||
X = fft(x) # FFTs to find X[k] and Y[k]
|
||||
Y = fft(y)
|
||||
|
||||
H = Y / X # Computation of H[k]
|
||||
|
||||
threshold = epsi * max(np.absolute(X))
|
||||
ii = np.absolute(X) < threshold
|
||||
|
||||
H[ii] = 0
|
||||
H = (Y*np.conj(X))/(np.abs(X)**2+epsi)
|
||||
|
||||
h = np.real(ifft(H)) # IFFT to find h[n]
|
||||
h[np.abs(h) < 1e-12] = 0
|
||||
# Truncation to length Lhat (optional and actually not recommended before you inspect the entire h)
|
||||
h = h[0:Lhat]
|
||||
|
||||
h = np.fft.fftshift(h)
|
||||
return h
|
||||
|
||||
def signal_Crop(y1):
|
||||
scale = 300
|
||||
pk = np.argmax(y1)
|
||||
start = int(max(pk - scale,0))
|
||||
end = int(pk + scale)
|
||||
return start, end
|
||||
def peak_ref(y):
|
||||
N, C = y.shape
|
||||
peaks = np.zeros(C, dtype=int)
|
||||
ref_ch = 4
|
||||
ref_sig = np.abs(y[:,ref_ch])
|
||||
ref_pk, _ = find_peaks(ref_sig, height= 0.5*np.max(ref_sig))
|
||||
|
||||
if len(ref_pk) == 0:
|
||||
ref_peak = np.argmax(ref_sig)
|
||||
else:
|
||||
ref_peak = ref_pk[100]
|
||||
|
||||
peaks[ref_ch] = ref_peak
|
||||
|
||||
for ch in range(C):
|
||||
if ch == ref_ch:
|
||||
continue
|
||||
sig = np.abs(y[:,ch])
|
||||
|
||||
start = max(0, ref_peak - 1500)
|
||||
end = min(N, ref_peak + 1500)
|
||||
|
||||
local = sig[start:end]
|
||||
pk, _ = find_peaks(local, height= 0.9*np.max(sig))
|
||||
|
||||
if len(pk) == 0:
|
||||
local_peak = np.argmax(local)
|
||||
else:
|
||||
local_peak = np.argmax(local)
|
||||
peaks[ch] = start + local_peak
|
||||
return peaks
|
||||
|
||||
|
||||
def sig_comp(h1,Fs):
|
||||
h1_peak, _ = find_peaks(h1, height = np.max(h1)*0.99)
|
||||
center = len(h1) // 2
|
||||
h1_peak = np.argmax(np.abs(h1))
|
||||
|
||||
peak_1 = h1_peak[0]
|
||||
|
||||
sample_range = np.array([peak_1])
|
||||
sample_range = h1_peak - center
|
||||
time_dif = sample_range / Fs
|
||||
distance = abs(time_dif) * 34300
|
||||
distance = time_dif * 34300 #cm
|
||||
return distance
|
||||
|
||||
return distance, peak_1
|
||||
def distance_calc(y1,y2,epsi,Fs, peak1, peak2):
|
||||
|
||||
def distance_calc(y1,y2,epsi,Fs):
|
||||
start1, end1 = signal_Crop(y1)
|
||||
start2, end2 = signal_Crop(y2)
|
||||
min_p = min(peak1, peak2)
|
||||
max_p = max(peak1, peak2)
|
||||
|
||||
start_true= min(start1, start2)
|
||||
end_true = max(end1, end2)
|
||||
start = max(min_p - 800, 0)
|
||||
end = min(max_p + 800, len(y1))
|
||||
|
||||
y1_crop = y1[start_true:end_true]
|
||||
y2_crop = y2[start_true:end_true]
|
||||
|
||||
Lhat = len(y1_crop)
|
||||
y1_crop = y1[start:end]
|
||||
y2_crop = y2[start:end]
|
||||
|
||||
plt.figure(figsize=(10, 4))
|
||||
plt.plot(y1_crop, label='Channel 1 (cropped)')
|
||||
plt.plot(y2_crop, label='Channel 2 (cropped)')
|
||||
plt.title(f'Cropped signals for TDOA calculation\nPeaks: {peak1}, {peak2}')
|
||||
plt.xlabel('Samples (cropped)')
|
||||
plt.ylabel('Amplitude')
|
||||
plt.grid(True)
|
||||
plt.legend()
|
||||
plt.show()
|
||||
Lhat = 501
|
||||
h1 = ch3(y1_crop, y2_crop, Lhat, epsi)
|
||||
distance, peak_1 = sig_comp(h1, Fs)
|
||||
print(distance)
|
||||
return distance[0]
|
||||
distance = sig_comp(h1, Fs)
|
||||
return distance
|
||||
|
||||
def location_calc(mic_coords, ref_index, distances, start_point = [230,230,0]):
|
||||
ref = mic_coords[ref_index]
|
||||
@ -84,44 +107,40 @@ def location_calc(mic_coords, ref_index, distances, start_point = [230,230,0]):
|
||||
res = []
|
||||
for i, idx in enumerate(other_indices):
|
||||
mic = mic_coords[idx]
|
||||
diff = np.linalg.norm(S-mic) - np.linalg.norm(S-ref) - distances[i]
|
||||
diff = (np.linalg.norm(S-mic) - np.linalg.norm(S-ref)) - distances[i]
|
||||
res.append(diff)
|
||||
return res
|
||||
|
||||
sol = least_squares(residuals, start_point)
|
||||
sol = least_squares(residuals, start_point, bounds = ([0,0,-1],[460,460,1]))
|
||||
return sol.x
|
||||
|
||||
def location(y,Fs):
|
||||
y1 = y[0]
|
||||
y2 = y[1]
|
||||
y3 = y[2]
|
||||
y4 = y[3]
|
||||
y5 = y[4]
|
||||
epsi = 0.01
|
||||
d1 = distance_calc(y5,y1,epsi,Fs)
|
||||
d2 = distance_calc(y5,y2,epsi,Fs)
|
||||
d3 = distance_calc(y5,y3,epsi,Fs)
|
||||
d4 = distance_calc(y5,y4,epsi,Fs)
|
||||
peaks = peak_ref(y)
|
||||
y1, y2, y3, y4, y5 = y.T
|
||||
p1, p2, p3, p4, p5 = peaks
|
||||
|
||||
epsi = 0.0001
|
||||
d1 = distance_calc(y5,y1,epsi,Fs, p5, p1)
|
||||
d2 = distance_calc(y5,y2,epsi,Fs, p5, p2)
|
||||
d3 = distance_calc(y5,y3,epsi,Fs, p5, p3)
|
||||
d4 = distance_calc(y5,y4,epsi,Fs, p5,p4)
|
||||
|
||||
mic_coords = np.array([
|
||||
[0,0,25], # mic 1
|
||||
[0,460,25], # mic 2
|
||||
[460,460,25], # mic 3
|
||||
[460,0,25], # mic 4
|
||||
[0,230,55] # mic 5
|
||||
[0,0,25], # mic 1 cm
|
||||
[0,460,25], # mic 2 cm
|
||||
[460,460,25], # mic 3 cm
|
||||
[460,0,25], # mic 4 cm
|
||||
[0,230,55] # mic 5 cm
|
||||
])
|
||||
|
||||
ref_index = 4 #used to makes mic 5 the ref
|
||||
distances = np.array([d1,d2,d3,d4])
|
||||
print("Distances (d1, d2, d3, d4):", distances)
|
||||
print("Peak samples: ", peaks)
|
||||
|
||||
source_pos = location_calc(mic_coords, ref_index, distances)
|
||||
return source_pos
|
||||
|
||||
ref_index = 4 #used to makes mic 5 the ref
|
||||
distances = np.array([d1,d2,d3,d4])
|
||||
|
||||
source_pos = location_calc(mic_coords, ref_index, distances)
|
||||
return source_pos
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Coordinates of the recordings
|
||||
@ -137,8 +156,22 @@ if __name__ == "__main__":
|
||||
real_y = record_y[i]
|
||||
filenames.append(f"../files/Student Recordings/record_x{real_x}_y{real_y}.wav")
|
||||
|
||||
# Load the first recording
|
||||
Fs, recording = wavfile.read(filenames[0])
|
||||
print(location(recording, Fs))
|
||||
print(Fs)
|
||||
for i, file in enumerate(filenames):
|
||||
Fs, recording = wavfile.read(file)
|
||||
recording = recording.astype(np.float64) / np.max(np.abs(recording))
|
||||
print(f"\nRecording {i+1}: {file}")
|
||||
source_pos = location(recording, Fs)
|
||||
print("Estimated source position:", source_pos)
|
||||
|
||||
num_channels = recording.shape[1]
|
||||
fig, axs = plt.subplots(num_channels, 1, figsize=(10, 2*num_channels), sharex=True)
|
||||
|
||||
for ch in range(num_channels):
|
||||
axs[ch].plot(recording[:, ch])
|
||||
axs[ch].set_ylabel(f"Ch {ch+1}")
|
||||
axs[ch].grid(True)
|
||||
|
||||
axs[-1].set_xlabel("Samples")
|
||||
plt.suptitle(f"Waveforms of all channels - Recording {i+1}")
|
||||
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
||||
plt.show()
|
||||
Loading…
x
Reference in New Issue
Block a user