mirror of
https://gitlab.ewi.tudelft.nl/ee2l1/2025-2026/A.K.03.git
synced 2025-12-12 14:50:57 +01:00
177 lines
4.9 KiB
Python
177 lines
4.9 KiB
Python
import numpy as np # For convolution function
|
|
import matplotlib.pyplot as plt # For plotting purposes
|
|
import scipy
|
|
from fontTools.misc.plistlib import end_true
|
|
# import samplerate
|
|
|
|
from scipy import signal
|
|
from scipy.optimize import least_squares
|
|
from scipy.io import wavfile # For reading .wav files
|
|
from scipy.signal import find_peaks # For filter function
|
|
from scipy.fft import fft, ifft # For fft and ifft
|
|
|
|
# def wavaudioread(filename, fs):
|
|
# fs_wav, y_wav = wavfile.read(filename)
|
|
# y = samplerate.resample(y_wav, fs / fs_wav, "sinc_best")
|
|
#
|
|
# return y
|
|
|
|
# ch3 function
|
|
def ch3(x,y,Lhat,epsi):
|
|
N = 2**int(np.ceil(np.log2(len(x)+len(y))))
|
|
x = np.pad(x, (0,N - len(x))) # Zero padding
|
|
y = np.pad(y, (0,N - len(y))) # Zero padding
|
|
|
|
X = fft(x) # FFTs to find X[k] and Y[k]
|
|
Y = fft(y)
|
|
|
|
H = (Y*np.conj(X))/(np.abs(X)**2+epsi)
|
|
|
|
h = np.real(ifft(H)) # IFFT to find h[n]
|
|
h = np.fft.fftshift(h)
|
|
return h
|
|
|
|
def peak_ref(y):
|
|
N, C = y.shape
|
|
peaks = np.zeros(C, dtype=int)
|
|
ref_ch = 4
|
|
ref_sig = np.abs(y[:,ref_ch])
|
|
ref_pk, _ = find_peaks(ref_sig, height= 0.5*np.max(ref_sig))
|
|
|
|
if len(ref_pk) == 0:
|
|
ref_peak = np.argmax(ref_sig)
|
|
else:
|
|
ref_peak = ref_pk[100]
|
|
|
|
peaks[ref_ch] = ref_peak
|
|
|
|
for ch in range(C):
|
|
if ch == ref_ch:
|
|
continue
|
|
sig = np.abs(y[:,ch])
|
|
|
|
start = max(0, ref_peak - 1500)
|
|
end = min(N, ref_peak + 1500)
|
|
|
|
local = sig[start:end]
|
|
pk, _ = find_peaks(local, height= 0.9*np.max(sig))
|
|
|
|
if len(pk) == 0:
|
|
local_peak = np.argmax(local)
|
|
else:
|
|
local_peak = np.argmax(local)
|
|
peaks[ch] = start + local_peak
|
|
return peaks
|
|
|
|
|
|
def sig_comp(h1,Fs):
|
|
center = len(h1) // 2
|
|
h1_peak = np.argmax(np.abs(h1))
|
|
|
|
sample_range = h1_peak - center
|
|
time_dif = sample_range / Fs
|
|
distance = time_dif * 34300 #cm
|
|
return distance
|
|
|
|
def distance_calc(y1,y2,epsi,Fs, peak1, peak2):
|
|
|
|
min_p = min(peak1, peak2)
|
|
max_p = max(peak1, peak2)
|
|
|
|
start = max(min_p - 800, 0)
|
|
end = min(max_p + 800, len(y1))
|
|
|
|
y1_crop = y1[start:end]
|
|
y2_crop = y2[start:end]
|
|
|
|
plt.figure(figsize=(10, 4))
|
|
plt.plot(y1_crop, label='Channel 1 (cropped)')
|
|
plt.plot(y2_crop, label='Channel 2 (cropped)')
|
|
plt.title(f'Cropped signals for TDOA calculation\nPeaks: {peak1}, {peak2}')
|
|
plt.xlabel('Samples (cropped)')
|
|
plt.ylabel('Amplitude')
|
|
plt.grid(True)
|
|
plt.legend()
|
|
plt.show()
|
|
Lhat = 501
|
|
h1 = ch3(y1_crop, y2_crop, Lhat, epsi)
|
|
distance = sig_comp(h1, Fs)
|
|
return distance
|
|
|
|
def location_calc(mic_coords, ref_index, distances, start_point = [230,230,0]):
|
|
ref = mic_coords[ref_index]
|
|
other_indices = [i for i in range(mic_coords.shape[0]) if i != ref_index]
|
|
|
|
def residuals(S):
|
|
S = np.array([S[0],S[1],0])
|
|
res = []
|
|
for i, idx in enumerate(other_indices):
|
|
mic = mic_coords[idx]
|
|
diff = (np.linalg.norm(S-mic) - np.linalg.norm(S-ref)) - distances[i]
|
|
res.append(diff)
|
|
return res
|
|
|
|
sol = least_squares(residuals, start_point, bounds = ([0,0,-1],[460,460,1]))
|
|
return sol.x
|
|
|
|
def location(y,Fs):
|
|
peaks = peak_ref(y)
|
|
y1, y2, y3, y4, y5 = y.T
|
|
p1, p2, p3, p4, p5 = peaks
|
|
|
|
epsi = 0.0001
|
|
d1 = distance_calc(y5,y1,epsi,Fs, p5, p1)
|
|
d2 = distance_calc(y5,y2,epsi,Fs, p5, p2)
|
|
d3 = distance_calc(y5,y3,epsi,Fs, p5, p3)
|
|
d4 = distance_calc(y5,y4,epsi,Fs, p5,p4)
|
|
|
|
mic_coords = np.array([
|
|
[0,0,25], # mic 1 cm
|
|
[0,460,25], # mic 2 cm
|
|
[460,460,25], # mic 3 cm
|
|
[460,0,25], # mic 4 cm
|
|
[0,230,55] # mic 5 cm
|
|
])
|
|
|
|
ref_index = 4 #used to makes mic 5 the ref
|
|
distances = np.array([d1,d2,d3,d4])
|
|
print("Distances (d1, d2, d3, d4):", distances)
|
|
print("Peak samples: ", peaks)
|
|
|
|
source_pos = location_calc(mic_coords, ref_index, distances)
|
|
return source_pos
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Coordinates of the recordings
|
|
record_x = [64, 82, 109, 143, 150, 178, 232]
|
|
record_y = [40, 399, 76, 296, 185, 439, 275]
|
|
|
|
# List to store filenames
|
|
filenames = []
|
|
|
|
# Generate filenames based on coordinates
|
|
for i in range(len(record_x)):
|
|
real_x = record_x[i]
|
|
real_y = record_y[i]
|
|
filenames.append(f"../files/Student Recordings/record_x{real_x}_y{real_y}.wav")
|
|
|
|
for i, file in enumerate(filenames):
|
|
Fs, recording = wavfile.read(file)
|
|
recording = recording.astype(np.float64) / np.max(np.abs(recording))
|
|
print(f"\nRecording {i+1}: {file}")
|
|
source_pos = location(recording, Fs)
|
|
print("Estimated source position:", source_pos)
|
|
|
|
num_channels = recording.shape[1]
|
|
fig, axs = plt.subplots(num_channels, 1, figsize=(10, 2*num_channels), sharex=True)
|
|
|
|
for ch in range(num_channels):
|
|
axs[ch].plot(recording[:, ch])
|
|
axs[ch].set_ylabel(f"Ch {ch+1}")
|
|
axs[ch].grid(True)
|
|
|
|
axs[-1].set_xlabel("Samples")
|
|
plt.suptitle(f"Waveforms of all channels - Recording {i+1}")
|
|
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
|
plt.show() |