A.K.03/student_code/my_baby.py
2025-12-03 14:45:16 +01:00

177 lines
4.9 KiB
Python

import numpy as np # For convolution function
import matplotlib.pyplot as plt # For plotting purposes
import scipy
from fontTools.misc.plistlib import end_true
# import samplerate
from scipy import signal
from scipy.optimize import least_squares
from scipy.io import wavfile # For reading .wav files
from scipy.signal import find_peaks # For filter function
from scipy.fft import fft, ifft # For fft and ifft
# def wavaudioread(filename, fs):
# fs_wav, y_wav = wavfile.read(filename)
# y = samplerate.resample(y_wav, fs / fs_wav, "sinc_best")
#
# return y
# ch3 function
def ch3(x,y,Lhat,epsi):
N = 2**int(np.ceil(np.log2(len(x)+len(y))))
x = np.pad(x, (0,N - len(x))) # Zero padding
y = np.pad(y, (0,N - len(y))) # Zero padding
X = fft(x) # FFTs to find X[k] and Y[k]
Y = fft(y)
H = (Y*np.conj(X))/(np.abs(X)**2+epsi)
h = np.real(ifft(H)) # IFFT to find h[n]
h = np.fft.fftshift(h)
return h
def peak_ref(y):
N, C = y.shape
peaks = np.zeros(C, dtype=int)
ref_ch = 4
ref_sig = np.abs(y[:,ref_ch])
ref_pk, _ = find_peaks(ref_sig, height= 0.5*np.max(ref_sig))
if len(ref_pk) == 0:
ref_peak = np.argmax(ref_sig)
else:
ref_peak = ref_pk[100]
peaks[ref_ch] = ref_peak
for ch in range(C):
if ch == ref_ch:
continue
sig = np.abs(y[:,ch])
start = max(0, ref_peak - 1500)
end = min(N, ref_peak + 1500)
local = sig[start:end]
pk, _ = find_peaks(local, height= 0.9*np.max(sig))
if len(pk) == 0:
local_peak = np.argmax(local)
else:
local_peak = np.argmax(local)
peaks[ch] = start + local_peak
return peaks
def sig_comp(h1,Fs):
center = len(h1) // 2
h1_peak = np.argmax(np.abs(h1))
sample_range = h1_peak - center
time_dif = sample_range / Fs
distance = time_dif * 34300 #cm
return distance
def distance_calc(y1,y2,epsi,Fs, peak1, peak2):
min_p = min(peak1, peak2)
max_p = max(peak1, peak2)
start = max(min_p - 800, 0)
end = min(max_p + 800, len(y1))
y1_crop = y1[start:end]
y2_crop = y2[start:end]
plt.figure(figsize=(10, 4))
plt.plot(y1_crop, label='Channel 1 (cropped)')
plt.plot(y2_crop, label='Channel 2 (cropped)')
plt.title(f'Cropped signals for TDOA calculation\nPeaks: {peak1}, {peak2}')
plt.xlabel('Samples (cropped)')
plt.ylabel('Amplitude')
plt.grid(True)
plt.legend()
plt.show()
Lhat = 501
h1 = ch3(y1_crop, y2_crop, Lhat, epsi)
distance = sig_comp(h1, Fs)
return distance
def location_calc(mic_coords, ref_index, distances, start_point = [230,230,0]):
ref = mic_coords[ref_index]
other_indices = [i for i in range(mic_coords.shape[0]) if i != ref_index]
def residuals(S):
S = np.array([S[0],S[1],0])
res = []
for i, idx in enumerate(other_indices):
mic = mic_coords[idx]
diff = (np.linalg.norm(S-mic) - np.linalg.norm(S-ref)) - distances[i]
res.append(diff)
return res
sol = least_squares(residuals, start_point, bounds = ([0,0,-1],[460,460,1]))
return sol.x
def location(y,Fs):
peaks = peak_ref(y)
y1, y2, y3, y4, y5 = y.T
p1, p2, p3, p4, p5 = peaks
epsi = 0.0001
d1 = distance_calc(y5,y1,epsi,Fs, p5, p1)
d2 = distance_calc(y5,y2,epsi,Fs, p5, p2)
d3 = distance_calc(y5,y3,epsi,Fs, p5, p3)
d4 = distance_calc(y5,y4,epsi,Fs, p5,p4)
mic_coords = np.array([
[0,0,25], # mic 1 cm
[0,460,25], # mic 2 cm
[460,460,25], # mic 3 cm
[460,0,25], # mic 4 cm
[0,230,55] # mic 5 cm
])
ref_index = 4 #used to makes mic 5 the ref
distances = np.array([d1,d2,d3,d4])
print("Distances (d1, d2, d3, d4):", distances)
print("Peak samples: ", peaks)
source_pos = location_calc(mic_coords, ref_index, distances)
return source_pos
if __name__ == "__main__":
# Coordinates of the recordings
record_x = [64, 82, 109, 143, 150, 178, 232]
record_y = [40, 399, 76, 296, 185, 439, 275]
# List to store filenames
filenames = []
# Generate filenames based on coordinates
for i in range(len(record_x)):
real_x = record_x[i]
real_y = record_y[i]
filenames.append(f"../files/Student Recordings/record_x{real_x}_y{real_y}.wav")
for i, file in enumerate(filenames):
Fs, recording = wavfile.read(file)
recording = recording.astype(np.float64) / np.max(np.abs(recording))
print(f"\nRecording {i+1}: {file}")
source_pos = location(recording, Fs)
print("Estimated source position:", source_pos)
num_channels = recording.shape[1]
fig, axs = plt.subplots(num_channels, 1, figsize=(10, 2*num_channels), sharex=True)
for ch in range(num_channels):
axs[ch].plot(recording[:, ch])
axs[ch].set_ylabel(f"Ch {ch+1}")
axs[ch].grid(True)
axs[-1].set_xlabel("Samples")
plt.suptitle(f"Waveforms of all channels - Recording {i+1}")
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.show()